Hard X-Ray Nanoprobe with Refractive X-Ray Lenses

C. G. Schroer,1 O. Kurapova,2 J. Patommel,2 P. Boye,2 J. Feldkamp,2 B. Lengeler,2 M. Burghammer,3 C. Riekel,3 L. Vincze,4 A. van der Hart,5 M. Küchler6

1HASYLAB at DESY, Notkestr. 85, D-22607 Hamburg, Germany
2II. Physikalisches Institut, Aachen University, D-52056 Aachen, Germany
3ESRF, BP 220, F-38043 Grenoble Cedex, France
4Department of Analytical Chemistry, Ghent University, Krijgslaan 281 S12, B-9000 Ghent, Belgium
5ISG, Research Center Jülich, D-52425 Jülich, Germany
6IZM, Fraunhofer Institute, Reichenhainer Str. 88, D-09107 Chemnitz, Germany

At synchrotron radiation sources, parabolic refractive x-ray lenses allow one to build both full field and scanning microscopes in the hard x-ray range. For the latter microscope, a small and intensive microbeam is required. Parabolic refractive x-ray lenses with a focal distance in the centimeter range, so-called nanofocusing lenses (NFLs), can generate hard x-ray nanobeams in the range of 100nm and below, even at short distances, i.e., 40 to 70m from the source [1]. Recently, a 50 × 50nm² beam with 1.6 × 10⁸ph/s at 21keV (monochromatic, Si 111) was generated using silicon NFLs in crossed geometry (cf. Figure) at a distance of 47m from an undulator source (ID13) at the European Synchrotron Radiation Facility. This beam is not diffraction limited, and smaller beams may become available in the future. Lenses made of more transparent materials, such as boron or diamond, could yield an increase in flux of one order of magnitude and have a larger numerical aperture. The fundamental limit for focusing with refractive lenses lies below 5nm [2].

References: