TwinMic – A European Twin X-ray Spectromicroscopy Station

<u>Burkhard Kaulich</u>¹, Jean Susini², Christian David³, Enzo Di Fabrizio⁴, Graeme Morrison⁵, Pambos Charalambous⁹, Juergen Thieme⁶, Thomas Wilhein⁷, Janez Kovac⁸, Daniel Bacescu¹, Murielle Salome², Olivier Dhez², Timm Weitkamp³, Stefano Cabrini⁴, Dan Cojoc⁴, Alessandra Gianoncelli⁵, Ulrich Vogt⁷, Matevz Podnar⁸, and Maya Kiskinova¹

¹ELETTRA, S.S. 14, km 163.5 in Area Science Park, I-34012 Trieste, Italy
²ESRF, 6 Rue Jules Horowitz, BP 220, 38043 Grenoble Cedex 9, France
³Paul-Scherrer-Institute, LMN, 5232 Villigen PSI, Switzerland
⁴TASC-INFM, , S.S. 14, km 163.5 in Area Science Park, I-34012 Trieste, Italy
⁵King's College London, Dept. of Physics, Strand, London WC2R 2LS, UK
⁶Uni Goettingen, IRP, Geiststrasse 11, 37073 Goettingen, Germany
⁷RheinAhrCampus Remagen, Suedallee 2, 53424 Remagen, Germany
⁸Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
⁹Zoneplates.com Ltd, 8 Southway, Claverings, London N9 OAB, UK

Two types of transmission X-ray microscopes are worldwide in operation - scanning and full-field imaging - with different but complementary imaging capabilities. A novel approach used in a RT&D project of the European Commission (HPRI-CT-2001-50024) is aiming at integrating both microscope types in a single instrument with easy switch between the two modes. For the first time, a X-ray microscope is constructed by the united effort of European groups that have mastered in X-ray instrumentation, optics and detectors, nanotechnology, imaging and X-ray spectroscopy using different contrast mechanisms.

The expected potential and capability of such a twin microscope station is the combination of complementary microscope modes with versatile contrast techniques into a *single* instrument to perform: (i) X-ray imaging for morphological characterization combined with dynamical studies and tomography; (ii) spectromicroscopic analysis including elemental mapping and determination of specimen's chemistry on microscopic scale; and (iii) specimen characterization in their natural, solid or liquid environment.

Essential strength of the instrument is its wide working energy range from 250 - 2500 eV preserving the performance of individual microscopes. The photon energy range covers the water window between the C, N and O absorption edges and L-edges of Fe, Ni, Co with particular importance for characterization of magnetic materials. Access to K-absorption edges of elements opens up the opportunity for advanced studies in biology, medicine, pharmacology, geochemistry, environmental and earth sciences, and material research.

The TwinMic station is temporary hosted by the ELETTRA BACH beamline, where both scanning and full-field imaging modes past successfully first commissioning experiments.