Development of a laser plasma x-ray microscope for Living hydrated biological specimens

Masataka Kado¹, Hiroyuki Daido¹, Yoshimasa Yamamoto², Kunio Shinohara³, and Martin C. Richardson⁴

¹Advanced Photon Research Center, JAERI-Kansai, 8-1 Umemidai, Kizu-cho, Souraku-gun, Kyoto, Japan

²Graduate School of Medicine, Osaka Univ., 1-7 Yamadaoka, Suita, Osaka, Japan

³Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Mikazuki-cho, Sayo, Hyogo, Japan

⁴CREOL, University of Central Florida, Orlando, FL, USA

Investigating the structure and the function of life object performing advanced life activity becomes important. In order to investigate the life object, it is necessary to observe living specimens with high spatial resolution and high temporal resolution. Since laser plasma x-ray source has high brightness and short pulse duration, x-ray microscope with the laser plasma x-ray source makes possible to observe living specimens. Such as chromosomes, macrophages[1], bacterium[2][3], and so on have been observed by contact x-ray microscopy. The x-ray images obtained by indirect measurements such as the contact x-ray microscopy have difficulty to avoid artificial effect such as irregular due to developing process. Development of an x-ray microscope with laser plasma x-ray source is necessary to avoid such defects. We have been developing an x-ray microscope with laser plasma x-ray source to observe wet live specimens. The detail of the x-ray microscope will be presented.

REFERENCES

- [1] M. Kado, M. C. Richardson, J. M. Rajyaguru, M. J. Muszynski, Y. Yamamoto, Proc. of Experimental Biology and Medicine, **220**, 21 (1999).
- [2] J. M. Rajyaguru, M. Kado, M. C. Richardson, and M. J. Muszynski, Biophysical Journal, 72, 1521 (1997).
- [3] J. M. Rajyaguru, M. Kado, K. Nekula, M. C. Richardson, and M. J. Muszynski, Microbiology, 143, 733 (1997).